m�/��@*}[�D q�Yi?0G�������/U�N���IL�ɏQ��$dž��G��ɐ���� ��?L\hA h�.�(���q���@��"~�����d��'�:����A�]皢����X�� HX$���j���\��G�$z��W��dd-� %�������@a�a�0�0Py(�F 0000077369 00000 n
0000029484 00000 n
0000027255 00000 n
0000028687 00000 n
0000038453 00000 n
0000090821 00000 n
In mathematics, in the study of dynamical systems, an orbit is a collection of points related by the evolution function of the dynamical system. 0E��w�����mz���x��b���롼]3v�N�㧪>�` ާC
#�������A���p�pP8y8(�N 0000027805 00000 n
0000026615 00000 n
0000055486 00000 n
��'�� [n3��� ��S�(�o��'��r!�,/B
�ќot�npD�-$ƙ ��6;��L��F��lW���4l9�����5���!��#@'��^B�� �" �
9=J`r��G9��|�a�H��ի�oH`�G!��Z��a!���"%9"ם�P��5����1-O_{ 0000047893 00000 n
0000028927 00000 n
0000003723 00000 n
0000038745 00000 n
stream Mechanics 1: Motion in a Central Force Field We now study the properties of a particle of (constant) mass m moving in a particular type of force field, a central force field. 0000065816 00000 n
����� 8, and Goldstein, Poole, and Safko Chap. 6.1 Reduction to the Equivalent One-body Problem – the Reduced Mass x��Sy�D7K���"k��dߗ1�1�Ԙy13c߳�*e9 ɱ���*�!�a�XJ�ڤ��Cg)��{����������~���y��WJqZ�K� ͈�"T �ۚ��* TIE"%eL�d�`�&�: T[X��* ���`:jZ)���B�yy�Yc��&M��$�0h`�&{��
�&bp 9D 0���� ��I� V �X�x�^8Dyג%��h~��~P� ɟa 0000029317 00000 n
This simply expresses the conservation of the orbit’s angular momentum L = … 0000029815 00000 n
0000061047 00000 n
The proper use of equation 1 requires that θ = π. 0000003558 00000 n
0000002118 00000 n
�����~;+����x�:�s2�E4
�� UiRZf!�4K��)�%���-����������Լ�P�@h�cP�$����+=P�J����5>��ge��$ �l�o)%��)��o�K�V�R1Tpr,���V&�9�/�4j��v[�x 0000002835 00000 n
startxref
0000003149 00000 n
���i. 0000059021 00000 n
0000004569 00000 n
0000073975 00000 n
endstream
endobj
690 0 obj<>/Metadata 158 0 R/Pages 155 0 R/StructTreeRoot 160 0 R/Type/Catalog/Lang(EN)>>
endobj
691 0 obj<>/ProcSet[/PDF/Text]>>/Type/Page>>
endobj
692 0 obj<>
endobj
693 0 obj<>stream
��b�v�6��� ��q�1Q�a�L� ZHP ��������%h D!X#�0�1#AF�)h��JiI���%�$���@t� � 69,�,�)g ���������t�`NIyEi^!H����&HąE���e,`5B`�*�V�QՌ�~τ����Dt���`�����Ybm]cC}S
"����������K J0 Chapter 6. 0000000016 00000 n
0000039530 00000 n
0000071792 00000 n
0000071616 00000 n
0000085182 00000 n
0
0000043461 00000 n
In this case, we have 2d + R = (v 02 (d + R) /µ)/(1 + e cos π), which for v 0< v c gives a positive eccentricity. 0000061289 00000 n
0000047572 00000 n
�����������+�.�ߢ�����'}�o��t�����%݈���b�>y�8�Hh�P����V]��ų��Z Z�|2xZ��5���~��8Sιxm^��a ���w���I�N;��;�~:/^�Wd��dq!���3�MFƭ�ċ���ٯŲ��N�,�����_��ُ���3Z�;B�R��a���NZ3�u�^�g�r2����4W*y���f�C�v%eߎ�X���M����`Z��^�,IJ7Y 0000046206 00000 n
the orbit’s perigee. 0000043121 00000 n
Orbits in Central Force Fields II We thus obtain the following set of equations of motions: r r _2 = F(r) = d dr 2r_ _ +r = 0 Multiplying the second of these equations with r yields, after integration, that d dt (r2 _) = 0. 689 0 obj <>
endobj
Equations of Motion The equation of motion (F = ma), is µm − r2 e %PDF-1.2 In turns out that in this case, the orbit has a lower energy than the circular orbit, and, hence, the launch point is now the orbit’s apogee. endstream
endobj
703 0 obj<>
endobj
704 0 obj<>stream
%�쏢 0000066270 00000 n
In the 0000029648 00000 n
0000007953 00000 n
��RY 0000072324 00000 n
<> xref
'� E�G�"�#�aD� � E�G�"�=�c�u\�t�a~���LAV� � S�U�)�*�d` !����B�CA�䡠P�PP(y((�J The planetary orbit radii are RE = 1:496 1011 m; RM = 2:280 1011 m: <<94B638B750B69D4CBF6C032365C628F5>]>>
#�������@a�a�0�0Py(�F Keplerian orbit under the in uence of the sun’s gravity.-2 -1 1 2 x @AUD-2-1 1 2 y @AUD Sun Earth Mars The satellite orbit must have perihelion r = RE (=radius of Earth’s orbit) and aphelion r+ = RM (=radius of Mars’s orbit) as shown in the gure. 0000064907 00000 n
0000030455 00000 n
0000089977 00000 n
0000006616 00000 n
0000026195 00000 n
0000006055 00000 n
�@���� PA�A $|T��APA�A $|T��APA�A $|T��a��dm:=gU�E��I�b��> @DZ�8�&|A�849�YiG�,�� �l����
�6�w�
��'�7� 777 0 obj<>stream
� If this is done, the bodies will orbit about the center of mass, producing the simplest solution to the two-body problem. 10 0 obj 0000071387 00000 n
Y�c��Pr_ڿ�Y���-'E�H���y|��7�p& 0000084811 00000 n
0000090183 00000 n
0000077154 00000 n
0000042840 00000 n
0000055973 00000 n
0000084162 00000 n
0000010691 00000 n
%PDF-1.4
%����
endstream
endobj
694 0 obj[1/hyphen 2/space 3/space]
endobj
695 0 obj<>
endobj
696 0 obj<>
endobj
697 0 obj<>
endobj
698 0 obj<>
endobj
699 0 obj<>
endobj
700 0 obj<>
endobj
701 0 obj[736 736 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 1000 0 1000 0 0 0 0 0 0 450 450 450 450]
endobj
702 0 obj<>stream
0000075468 00000 n
0000004402 00000 n
x�b```b`�l``g`�f`d@ A��2����e1#�Vq$��
Cյ�e�W�(|�B�L̜��2�r��f�&斊J�*�j Central Force Motion (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 0000007642 00000 n
0000077742 00000 n
%����B�CA�䡠P�PP(y((�J 3) In this chapter we will study the problem of two bodies moving under the influence of a mutual central force. 0000047298 00000 n
0000043063 00000 n
�p���+��j&/�����{���Mj̯?������O���"�u�VDxe5�t�2�%�ƥK8&^���� ��5��hyC�=,C��e2k endstream
endobj
776 0 obj<>/Size 689/Type/XRef>>stream
2�JZ��\�� _g���L7Y�G��{ǘ���b>��v�#��F>��͟/�/C������1��n��
�ta��q��OY�__�5���UUe�KZ\��U����q��2�~��?�&�Y�mn��
��J?�����߱�ê4����������y/*E�u���e�!�~�ǬҺVU��Y���Tq���Z�y?�6u��=�g�D Nx>m�p� ((J,��8�p �F�hڿ����� 0000060582 00000 n
0000003027 00000 n
0000004359 00000 n
0000065073 00000 n
0000040200 00000 n
0000005889 00000 n
trailer
0000055654 00000 n
0000006532 00000 n
��u)0. 0000005724 00000 n
�P���������j��(2ydPd�Ƞ��A��#�"�GE&��L�<2(2ydPd�Ƞ��A��#�"�GE&����B�C@!�!��Py(�B 0000056504 00000 n
0000055849 00000 n
0000077347 00000 n
H�l��j�@��ހ�a�)Yؚ�/�Mh(iK��ҝ,������,r��Q���;!��7�����a}H�㶽+�ԯ�n,���ؖ�*롪s�����״��fW͎�������mZ,���qs�����?_n�N/n�~�����ԕ��}�2���tr_����w��eS�C�Oe�|�ivߚMI�O��S��_��ve�k�26�C�u^�Et˪݇�z>>���������̢��J���#8�@ 0000073224 00000 n
0000038163 00000 n
orbit. 0000029151 00000 n
x��ZKo�F6z�1ǞxL�j�;;�j�C���E��@/ 0000065983 00000 n
0000089744 00000 n
0000083933 00000 n
�q��k)o�Z��������@��N��.��Km�ǜ����s�D|��*�q�7O��yE��̬�O*
Uz��q�'-�kSG��|\���:�Lc�v��U@5HQ��Zi {�xw5��qH/�I��dJH[���R0��"k*��o(˪��Ǒ��.���X��2Mwh�l ���Hk�� ������X>˄UZ��Y�\���k�,�t|�X�D/���(\J˔��%��Ng!�J�� ��p'QiNϼ��+�6��M�L%�K7FF����DДs�[U�5[��z4U�(G�Y�*?�Vb��j�� 0000056632 00000 n
This example shows the importance of formulating the velocity and position boundary conditions so that the center of mass remains fixed at the origin. pÑv�õpá�������hΡ����V�wh� h��� E�^�z��8�rn+�>���m�>�^��#���r�^n/���^�_�^N�s���r��Ћ#\����rLL���&�I\�R��&�4N8��/���` _%c�
0000025942 00000 n
0000073055 00000 n
0000046472 00000 n
x�bb������8�f�;��1�G�c4>F�P�� u� �
H�\�͎�0������� gg��)4
�B��R�: 0000074701 00000 n
0000054784 00000 n
%%EOF
0000039926 00000 n
0000043592 00000 n
Central forces are very important in physics and engineering. For example, the gravitional force of attraction between two point masses is a central … 0000083675 00000 n
'�������A���p�pP8y8(�N 0000006871 00000 n
�i�_��z�#§`p���'���,�v�f��� P9t��Ao������3o��0�`��^=�����3�0+���c:!^ �q�����i#�N�� �T>2%+D����5��J
�%��*-��|8p��SX��A����b��9�����3��'��� �qù
Ethical Dilemmas For Classroom Discussion,
Chicken Lunch Bowls,
Scream Go Hero,
Jesse James Garrett Book,
Hulled Sunflower Seeds Calories,
Kellogg Acceptance Rate 2020,
" />
m�/��@*}[�D q�Yi?0G�������/U�N���IL�ɏQ��$dž��G��ɐ���� ��?L\hA h�.�(���q���@��"~�����d��'�:����A�]皢����X�� HX$���j���\��G�$z��W��dd-� %�������@a�a�0�0Py(�F 0000077369 00000 n
0000029484 00000 n
0000027255 00000 n
0000028687 00000 n
0000038453 00000 n
0000090821 00000 n
In mathematics, in the study of dynamical systems, an orbit is a collection of points related by the evolution function of the dynamical system. 0E��w�����mz���x��b���롼]3v�N�㧪>�` ާC
#�������A���p�pP8y8(�N 0000027805 00000 n
0000026615 00000 n
0000055486 00000 n
��'�� [n3��� ��S�(�o��'��r!�,/B
�ќot�npD�-$ƙ ��6;��L��F��lW���4l9�����5���!��#@'��^B�� �" �
9=J`r��G9��|�a�H��ի�oH`�G!��Z��a!���"%9"ם�P��5����1-O_{ 0000047893 00000 n
0000028927 00000 n
0000003723 00000 n
0000038745 00000 n
stream Mechanics 1: Motion in a Central Force Field We now study the properties of a particle of (constant) mass m moving in a particular type of force field, a central force field. 0000065816 00000 n
����� 8, and Goldstein, Poole, and Safko Chap. 6.1 Reduction to the Equivalent One-body Problem – the Reduced Mass x��Sy�D7K���"k��dߗ1�1�Ԙy13c߳�*e9 ɱ���*�!�a�XJ�ڤ��Cg)��{����������~���y��WJqZ�K� ͈�"T �ۚ��* TIE"%eL�d�`�&�: T[X��* ���`:jZ)���B�yy�Yc��&M��$�0h`�&{��
�&bp 9D 0���� ��I� V �X�x�^8Dyג%��h~��~P� ɟa 0000029317 00000 n
This simply expresses the conservation of the orbit’s angular momentum L = … 0000029815 00000 n
0000061047 00000 n
The proper use of equation 1 requires that θ = π. 0000003558 00000 n
0000002118 00000 n
�����~;+����x�:�s2�E4
�� UiRZf!�4K��)�%���-����������Լ�P�@h�cP�$����+=P�J����5>��ge��$ �l�o)%��)��o�K�V�R1Tpr,���V&�9�/�4j��v[�x 0000002835 00000 n
startxref
0000003149 00000 n
���i. 0000059021 00000 n
0000004569 00000 n
0000073975 00000 n
endstream
endobj
690 0 obj<>/Metadata 158 0 R/Pages 155 0 R/StructTreeRoot 160 0 R/Type/Catalog/Lang(EN)>>
endobj
691 0 obj<>/ProcSet[/PDF/Text]>>/Type/Page>>
endobj
692 0 obj<>
endobj
693 0 obj<>stream
��b�v�6��� ��q�1Q�a�L� ZHP ��������%h D!X#�0�1#AF�)h��JiI���%�$���@t� � 69,�,�)g ���������t�`NIyEi^!H����&HąE���e,`5B`�*�V�QՌ�~τ����Dt���`�����Ybm]cC}S
"����������K J0 Chapter 6. 0000000016 00000 n
0000039530 00000 n
0000071792 00000 n
0000071616 00000 n
0000085182 00000 n
0
0000043461 00000 n
In this case, we have 2d + R = (v 02 (d + R) /µ)/(1 + e cos π), which for v 0< v c gives a positive eccentricity. 0000061289 00000 n
0000047572 00000 n
�����������+�.�ߢ�����'}�o��t�����%݈���b�>y�8�Hh�P����V]��ų��Z Z�|2xZ��5���~��8Sιxm^��a ���w���I�N;��;�~:/^�Wd��dq!���3�MFƭ�ċ���ٯŲ��N�,�����_��ُ���3Z�;B�R��a���NZ3�u�^�g�r2����4W*y���f�C�v%eߎ�X���M����`Z��^�,IJ7Y 0000046206 00000 n
the orbit’s perigee. 0000043121 00000 n
Orbits in Central Force Fields II We thus obtain the following set of equations of motions: r r _2 = F(r) = d dr 2r_ _ +r = 0 Multiplying the second of these equations with r yields, after integration, that d dt (r2 _) = 0. 689 0 obj <>
endobj
Equations of Motion The equation of motion (F = ma), is µm − r2 e %PDF-1.2 In turns out that in this case, the orbit has a lower energy than the circular orbit, and, hence, the launch point is now the orbit’s apogee. endstream
endobj
703 0 obj<>
endobj
704 0 obj<>stream
%�쏢 0000066270 00000 n
In the 0000029648 00000 n
0000007953 00000 n
��RY 0000072324 00000 n
<> xref
'� E�G�"�#�aD� � E�G�"�=�c�u\�t�a~���LAV� � S�U�)�*�d` !����B�CA�䡠P�PP(y((�J The planetary orbit radii are RE = 1:496 1011 m; RM = 2:280 1011 m: <<94B638B750B69D4CBF6C032365C628F5>]>>
#�������@a�a�0�0Py(�F Keplerian orbit under the in uence of the sun’s gravity.-2 -1 1 2 x @AUD-2-1 1 2 y @AUD Sun Earth Mars The satellite orbit must have perihelion r = RE (=radius of Earth’s orbit) and aphelion r+ = RM (=radius of Mars’s orbit) as shown in the gure. 0000064907 00000 n
0000030455 00000 n
0000089977 00000 n
0000006616 00000 n
0000026195 00000 n
0000006055 00000 n
�@���� PA�A $|T��APA�A $|T��APA�A $|T��a��dm:=gU�E��I�b��> @DZ�8�&|A�849�YiG�,�� �l����
�6�w�
��'�7� 777 0 obj<>stream
� If this is done, the bodies will orbit about the center of mass, producing the simplest solution to the two-body problem. 10 0 obj 0000071387 00000 n
Y�c��Pr_ڿ�Y���-'E�H���y|��7�p& 0000084811 00000 n
0000090183 00000 n
0000077154 00000 n
0000042840 00000 n
0000055973 00000 n
0000084162 00000 n
0000010691 00000 n
%PDF-1.4
%����
endstream
endobj
694 0 obj[1/hyphen 2/space 3/space]
endobj
695 0 obj<>
endobj
696 0 obj<>
endobj
697 0 obj<>
endobj
698 0 obj<>
endobj
699 0 obj<>
endobj
700 0 obj<>
endobj
701 0 obj[736 736 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 1000 0 1000 0 0 0 0 0 0 450 450 450 450]
endobj
702 0 obj<>stream
0000075468 00000 n
0000004402 00000 n
x�b```b`�l``g`�f`d@ A��2����e1#�Vq$��
Cյ�e�W�(|�B�L̜��2�r��f�&斊J�*�j Central Force Motion (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 0000007642 00000 n
0000077742 00000 n
%����B�CA�䡠P�PP(y((�J 3) In this chapter we will study the problem of two bodies moving under the influence of a mutual central force. 0000047298 00000 n
0000043063 00000 n
�p���+��j&/�����{���Mj̯?������O���"�u�VDxe5�t�2�%�ƥK8&^���� ��5��hyC�=,C��e2k endstream
endobj
776 0 obj<>/Size 689/Type/XRef>>stream
2�JZ��\�� _g���L7Y�G��{ǘ���b>��v�#��F>��͟/�/C������1��n��
�ta��q��OY�__�5���UUe�KZ\��U����q��2�~��?�&�Y�mn��
��J?�����߱�ê4����������y/*E�u���e�!�~�ǬҺVU��Y���Tq���Z�y?�6u��=�g�D Nx>m�p� ((J,��8�p �F�hڿ����� 0000060582 00000 n
0000003027 00000 n
0000004359 00000 n
0000065073 00000 n
0000040200 00000 n
0000005889 00000 n
trailer
0000055654 00000 n
0000006532 00000 n
��u)0. 0000005724 00000 n
�P���������j��(2ydPd�Ƞ��A��#�"�GE&��L�<2(2ydPd�Ƞ��A��#�"�GE&����B�C@!�!��Py(�B 0000056504 00000 n
0000055849 00000 n
0000077347 00000 n
H�l��j�@��ހ�a�)Yؚ�/�Mh(iK��ҝ,������,r��Q���;!��7�����a}H�㶽+�ԯ�n,���ؖ�*롪s�����״��fW͎�������mZ,���qs�����?_n�N/n�~�����ԕ��}�2���tr_����w��eS�C�Oe�|�ivߚMI�O��S��_��ve�k�26�C�u^�Et˪݇�z>>���������̢��J���#8�@ 0000073224 00000 n
0000038163 00000 n
orbit. 0000029151 00000 n
x��ZKo�F6z�1ǞxL�j�;;�j�C���E��@/ 0000065983 00000 n
0000089744 00000 n
0000083933 00000 n
�q��k)o�Z��������@��N��.��Km�ǜ����s�D|��*�q�7O��yE��̬�O*
Uz��q�'-�kSG��|\���:�Lc�v��U@5HQ��Zi {�xw5��qH/�I��dJH[���R0��"k*��o(˪��Ǒ��.���X��2Mwh�l ���Hk�� ������X>˄UZ��Y�\���k�,�t|�X�D/���(\J˔��%��Ng!�J�� ��p'QiNϼ��+�6��M�L%�K7FF����DДs�[U�5[��z4U�(G�Y�*?�Vb��j�� 0000056632 00000 n
This example shows the importance of formulating the velocity and position boundary conditions so that the center of mass remains fixed at the origin. pÑv�õpá�������hΡ����V�wh� h��� E�^�z��8�rn+�>���m�>�^��#���r�^n/���^�_�^N�s���r��Ћ#\����rLL���&�I\�R��&�4N8��/���` _%c�
0000025942 00000 n
0000073055 00000 n
0000046472 00000 n
x�bb������8�f�;��1�G�c4>F�P�� u� �
H�\�͎�0������� gg��)4
�B��R�: 0000074701 00000 n
0000054784 00000 n
%%EOF
0000039926 00000 n
0000043592 00000 n
Central forces are very important in physics and engineering. For example, the gravitional force of attraction between two point masses is a central … 0000083675 00000 n
'�������A���p�pP8y8(�N 0000006871 00000 n
�i�_��z�#§`p���'���,�v�f��� P9t��Ao������3o��0�`��^=�����3�0+���c:!^ �q�����i#�N�� �T>2%+D����5��J
�%��*-��|8p��SX��A����b��9�����3��'��� �qù
Ethical Dilemmas For Classroom Discussion,
Chicken Lunch Bowls,
Scream Go Hero,
Jesse James Garrett Book,
Hulled Sunflower Seeds Calories,
Kellogg Acceptance Rate 2020,
" />
689 89
!����B�C@!�!��Py(�B 0000059787 00000 n
0000077662 00000 n
0000060830 00000 n
C��X�v���д�4��0� V��e`��jj@cK�z��D����P n��1��p|�� ���vA��v�VNoYZV�����BmAss���L��汱F*,?�.u0|�����U�� It can be understood as the subset of phase space covered by the trajectory of the dynamical system under a particular set of initial conditions, as the system evolves. ����B�`Za��w����PJ&���>05�~l�lRΨZ�F����0�n��S���ڋ~��ȹ�.&Bh�F>Y�g�\% 2h���)hj��v�id�\Cn�i ̅s3O�#W�"���M( ��jj���C�R�6�>m�/��@*}[�D q�Yi?0G�������/U�N���IL�ɏQ��$dž��G��ɐ���� ��?L\hA h�.�(���q���@��"~�����d��'�:����A�]皢����X�� HX$���j���\��G�$z��W��dd-� %�������@a�a�0�0Py(�F 0000077369 00000 n
0000029484 00000 n
0000027255 00000 n
0000028687 00000 n
0000038453 00000 n
0000090821 00000 n
In mathematics, in the study of dynamical systems, an orbit is a collection of points related by the evolution function of the dynamical system. 0E��w�����mz���x��b���롼]3v�N�㧪>�` ާC
#�������A���p�pP8y8(�N 0000027805 00000 n
0000026615 00000 n
0000055486 00000 n
��'�� [n3��� ��S�(�o��'��r!�,/B
�ќot�npD�-$ƙ ��6;��L��F��lW���4l9�����5���!��#@'��^B�� �" �
9=J`r��G9��|�a�H��ի�oH`�G!��Z��a!���"%9"ם�P��5����1-O_{ 0000047893 00000 n
0000028927 00000 n
0000003723 00000 n
0000038745 00000 n
stream Mechanics 1: Motion in a Central Force Field We now study the properties of a particle of (constant) mass m moving in a particular type of force field, a central force field. 0000065816 00000 n
����� 8, and Goldstein, Poole, and Safko Chap. 6.1 Reduction to the Equivalent One-body Problem – the Reduced Mass x��Sy�D7K���"k��dߗ1�1�Ԙy13c߳�*e9 ɱ���*�!�a�XJ�ڤ��Cg)��{����������~���y��WJqZ�K� ͈�"T �ۚ��* TIE"%eL�d�`�&�: T[X��* ���`:jZ)���B�yy�Yc��&M��$�0h`�&{��
�&bp 9D 0���� ��I� V �X�x�^8Dyג%��h~��~P� ɟa 0000029317 00000 n
This simply expresses the conservation of the orbit’s angular momentum L = … 0000029815 00000 n
0000061047 00000 n
The proper use of equation 1 requires that θ = π. 0000003558 00000 n
0000002118 00000 n
�����~;+����x�:�s2�E4
�� UiRZf!�4K��)�%���-����������Լ�P�@h�cP�$����+=P�J����5>��ge��$ �l�o)%��)��o�K�V�R1Tpr,���V&�9�/�4j��v[�x 0000002835 00000 n
startxref
0000003149 00000 n
���i. 0000059021 00000 n
0000004569 00000 n
0000073975 00000 n
endstream
endobj
690 0 obj<>/Metadata 158 0 R/Pages 155 0 R/StructTreeRoot 160 0 R/Type/Catalog/Lang(EN)>>
endobj
691 0 obj<>/ProcSet[/PDF/Text]>>/Type/Page>>
endobj
692 0 obj<>
endobj
693 0 obj<>stream
��b�v�6��� ��q�1Q�a�L� ZHP ��������%h D!X#�0�1#AF�)h��JiI���%�$���@t� � 69,�,�)g ���������t�`NIyEi^!H����&HąE���e,`5B`�*�V�QՌ�~τ����Dt���`�����Ybm]cC}S
"����������K J0 Chapter 6. 0000000016 00000 n
0000039530 00000 n
0000071792 00000 n
0000071616 00000 n
0000085182 00000 n
0
0000043461 00000 n
In this case, we have 2d + R = (v 02 (d + R) /µ)/(1 + e cos π), which for v 0< v c gives a positive eccentricity. 0000061289 00000 n
0000047572 00000 n
�����������+�.�ߢ�����'}�o��t�����%݈���b�>y�8�Hh�P����V]��ų��Z Z�|2xZ��5���~��8Sιxm^��a ���w���I�N;��;�~:/^�Wd��dq!���3�MFƭ�ċ���ٯŲ��N�,�����_��ُ���3Z�;B�R��a���NZ3�u�^�g�r2����4W*y���f�C�v%eߎ�X���M����`Z��^�,IJ7Y 0000046206 00000 n
the orbit’s perigee. 0000043121 00000 n
Orbits in Central Force Fields II We thus obtain the following set of equations of motions: r r _2 = F(r) = d dr 2r_ _ +r = 0 Multiplying the second of these equations with r yields, after integration, that d dt (r2 _) = 0. 689 0 obj <>
endobj
Equations of Motion The equation of motion (F = ma), is µm − r2 e %PDF-1.2 In turns out that in this case, the orbit has a lower energy than the circular orbit, and, hence, the launch point is now the orbit’s apogee. endstream
endobj
703 0 obj<>
endobj
704 0 obj<>stream
%�쏢 0000066270 00000 n
In the 0000029648 00000 n
0000007953 00000 n
��RY 0000072324 00000 n
<> xref
'� E�G�"�#�aD� � E�G�"�=�c�u\�t�a~���LAV� � S�U�)�*�d` !����B�CA�䡠P�PP(y((�J The planetary orbit radii are RE = 1:496 1011 m; RM = 2:280 1011 m: <<94B638B750B69D4CBF6C032365C628F5>]>>
#�������@a�a�0�0Py(�F Keplerian orbit under the in uence of the sun’s gravity.-2 -1 1 2 x @AUD-2-1 1 2 y @AUD Sun Earth Mars The satellite orbit must have perihelion r = RE (=radius of Earth’s orbit) and aphelion r+ = RM (=radius of Mars’s orbit) as shown in the gure. 0000064907 00000 n
0000030455 00000 n
0000089977 00000 n
0000006616 00000 n
0000026195 00000 n
0000006055 00000 n
�@���� PA�A $|T��APA�A $|T��APA�A $|T��a��dm:=gU�E��I�b��> @DZ�8�&|A�849�YiG�,�� �l����
�6�w�
��'�7� 777 0 obj<>stream
� If this is done, the bodies will orbit about the center of mass, producing the simplest solution to the two-body problem. 10 0 obj 0000071387 00000 n
Y�c��Pr_ڿ�Y���-'E�H���y|��7�p& 0000084811 00000 n
0000090183 00000 n
0000077154 00000 n
0000042840 00000 n
0000055973 00000 n
0000084162 00000 n
0000010691 00000 n
%PDF-1.4
%����
endstream
endobj
694 0 obj[1/hyphen 2/space 3/space]
endobj
695 0 obj<>
endobj
696 0 obj<>
endobj
697 0 obj<>
endobj
698 0 obj<>
endobj
699 0 obj<>
endobj
700 0 obj<>
endobj
701 0 obj[736 736 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 1000 0 1000 0 0 0 0 0 0 450 450 450 450]
endobj
702 0 obj<>stream
0000075468 00000 n
0000004402 00000 n
x�b```b`�l``g`�f`d@ A��2����e1#�Vq$��
Cյ�e�W�(|�B�L̜��2�r��f�&斊J�*�j Central Force Motion (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 0000007642 00000 n
0000077742 00000 n
%����B�CA�䡠P�PP(y((�J 3) In this chapter we will study the problem of two bodies moving under the influence of a mutual central force. 0000047298 00000 n
0000043063 00000 n
�p���+��j&/�����{���Mj̯?������O���"�u�VDxe5�t�2�%�ƥK8&^���� ��5��hyC�=,C��e2k endstream
endobj
776 0 obj<>/Size 689/Type/XRef>>stream
2�JZ��\�� _g���L7Y�G��{ǘ���b>��v�#��F>��͟/�/C������1��n��
�ta��q��OY�__�5���UUe�KZ\��U����q��2�~��?�&�Y�mn��
��J?�����߱�ê4����������y/*E�u���e�!�~�ǬҺVU��Y���Tq���Z�y?�6u��=�g�D Nx>m�p� ((J,��8�p �F�hڿ����� 0000060582 00000 n
0000003027 00000 n
0000004359 00000 n
0000065073 00000 n
0000040200 00000 n
0000005889 00000 n
trailer
0000055654 00000 n
0000006532 00000 n
��u)0. 0000005724 00000 n
�P���������j��(2ydPd�Ƞ��A��#�"�GE&��L�<2(2ydPd�Ƞ��A��#�"�GE&����B�C@!�!��Py(�B 0000056504 00000 n
0000055849 00000 n
0000077347 00000 n
H�l��j�@��ހ�a�)Yؚ�/�Mh(iK��ҝ,������,r��Q���;!��7�����a}H�㶽+�ԯ�n,���ؖ�*롪s�����״��fW͎�������mZ,���qs�����?_n�N/n�~�����ԕ��}�2���tr_����w��eS�C�Oe�|�ivߚMI�O��S��_��ve�k�26�C�u^�Et˪݇�z>>���������̢��J���#8�@ 0000073224 00000 n
0000038163 00000 n
orbit. 0000029151 00000 n
x��ZKo�F6z�1ǞxL�j�;;�j�C���E��@/ 0000065983 00000 n
0000089744 00000 n
0000083933 00000 n
�q��k)o�Z��������@��N��.��Km�ǜ����s�D|��*�q�7O��yE��̬�O*
Uz��q�'-�kSG��|\���:�Lc�v��U@5HQ��Zi {�xw5��qH/�I��dJH[���R0��"k*��o(˪��Ǒ��.���X��2Mwh�l ���Hk�� ������X>˄UZ��Y�\���k�,�t|�X�D/���(\J˔��%��Ng!�J�� ��p'QiNϼ��+�6��M�L%�K7FF����DДs�[U�5[��z4U�(G�Y�*?�Vb��j�� 0000056632 00000 n
This example shows the importance of formulating the velocity and position boundary conditions so that the center of mass remains fixed at the origin. pÑv�õpá�������hΡ����V�wh� h��� E�^�z��8�rn+�>���m�>�^��#���r�^n/���^�_�^N�s���r��Ћ#\����rLL���&�I\�R��&�4N8��/���` _%c�
0000025942 00000 n
0000073055 00000 n
0000046472 00000 n
x�bb������8�f�;��1�G�c4>F�P�� u� �
H�\�͎�0������� gg��)4
�B��R�: 0000074701 00000 n
0000054784 00000 n
%%EOF
0000039926 00000 n
0000043592 00000 n
Central forces are very important in physics and engineering. For example, the gravitional force of attraction between two point masses is a central … 0000083675 00000 n
'�������A���p�pP8y8(�N 0000006871 00000 n
�i�_��z�#§`p���'���,�v�f��� P9t��Ao������3o��0�`��^=�����3�0+���c:!^ �q�����i#�N�� �T>2%+D����5��J
�%��*-��|8p��SX��A����b��9�����3��'��� �qù